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Abstract

In a recent National Research Council document, new strategies for risk assessment were 

described to enable more accurate and quicker assessments.(1) This report suggested that 

evaluating individual responses through increased use of biomonitoring could improve dose-

response estimations. Identification of specific biomarkers may be useful for diagnostics or risk 

prediction as they have the potential to improve exposure assessments. This paper discusses 

systems biology, biomarkers of effect, and computational toxicology approaches and their 

relevance to the occupational exposure limit setting process.

The systems biology approach evaluates the integration of biological processes and how 

disruption of these processes by chemicals or other hazards affects disease outcomes. This type of 

approach could provide information used in delineating the mode of action of the response or 

toxicity, and may be useful to define the low adverse and no adverse effect levels. Biomarkers of 

effect are changes measured in biological systems and are considered to be preclinical in nature. 

Advances in computational methods and experimental -omics methods that allow the simultaneous 

measurement of families of macromolecules such as DNA, RNA, and proteins in a single analysis 

have made these systems approaches feasible for broad application.

The utility of the information for risk assessments from -omics approaches has shown promise and 

can provide information on mode of action and dose-response relationships. As these techniques 

evolve, estimation of internal dose and response biomarkers will be a critical test of these new 

technologies for application in risk assessment strategies. While proof of concept studies have 

been conducted that provide evidence of their value, challenges with standardization and 

harmonization still need to be overcome before these methods are used routinely.
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INTRODUCTION

Currently, little toxicity data exist for most of the 82,000 chemicals used in the United 

States, which greatly hampers risk assessment and management activities.(2, 3) In addition, 

it is rare for workers or the general public to be exposed to only to a single compound, but 

rather they are exposed to complex mixtures that may have additive, synergistic, or 

antagonistic actions. The complexity of exposure scenarios and lack of data make risk 

management decisions difficult and time consuming.

The systems biology approach is based on consideration of normal biological processes 

(including pathways leading to effects and homeostatic and adaptive responses) and how 

chemicals disrupt those processes.(4, 5) This type of approach would provide integrated 

information that could be used in delineating the mode(s) (MOA) of action of the adverse 

response or toxicity.(6, 7) Different doses can produce widely different responses in an 

organism. Some of the responses are of no consequence to the health or viability of the 

organism, others may be beneficial (e.g., antioxidant), and others are toxic.(8)

Biomarkers have been defined by the National Academy of Sciences (NAS) as measurable 

changes in a biological system or organism or measured alterations in structure or function.

(9) Biomarkers may be indicative of exposure, response or effect, and susceptibility and can 

be used to monitor exposures and a wide variety of responses ranging from abnormal 

development to early disease indicators.(9, 10)

Occupational exposures are mainly by inhalation or through the dermal route, while the 

primary route for general environmental exposures is by ingestion. Route of exposure may 

affect the level of internal dose and therefore the toxicity. Biomarker measurements are an 

aggregate of all exposure pathways. One benefit of early response biomarkers is in their 

interpretation within the context of integrated systems models, which connect these 

biomarkers to adverse outcomes of regulatory concern. Advances in computational 

methods(11) and experimental -omics methods that allow the simultaneous measurement of 

families of macromolecules such as DNA, RNA, and proteins in a single analysis(12) have 

made these systems approaches feasible for broad application in both pharmaceutical 

discovery(11) and environmental risk assessment.(6) The promise is that information on 

hazard characterization, dose response and risk characterization can be generated by -omics 

methods and used in risk assessments.(7, 13)

This manuscript focuses on systems biology, biomarkers of effect/response, and 

computational toxicology approaches and their relevance to the occupational exposure limit 

(OEL) setting process. A glossary of key terms relating to this topic is provided in Table I 

and acronyms are defined in Table II.

Key points of emphasis covered in this manuscript include:
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• Many drivers exist for increased reliance on systems biology approaches that are 

pushing changes in health risk assessment methods, including for OEL setting.

• Practical long-term implications of such approaches are many, including decreased 

uncertainty in OELs through improved understanding of biological responses at 

lower levels of chemical exposure.

• Current methods and tools for consideration of effect biomarkers and the 

relationship with the toxic MOA within the framework of systems biology are 

being used and applied in OEL setting via proof of concept studies.

CURRENT EFFORTS ON EARLY RESPONSE BIOMARKERS AND RISK 

ASSESSMENT

Some efforts have been initiated in the global community to revise the way that risk 

assessments are conducted or to speed the data flow into risk assessments. The European 

Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) program 

seeks to determine the risk of thousands of chemicals that are produced in quantities greater 

than 10 tons/year.(14) Derived No Effect Levels are required for all chemicals that are 

classified as a health hazard. Traditional toxicity testing is unsustainable and unethical under 

this paradigm, because of the large number of animals that would be needed and the 

associated high cost.(15) Efforts to establish a sustainable strategy for toxicity testing in the 

United States were accelerated when the National Research Council (NRC) defined a vision 

of toxicity testing in the 21st century that called for greater use of in vitro testing, 

computational system approaches, and a reduction of expensive animal testing.(3, 16) In the 

NRC strategy, toxicity testing would evaluate specific perturbations in identified pathways 

rather than by direct evidence of adverse effects; therefore, risk assessments would be 

revised to incorporate this new information.(17) These new technologies could be performed 

faster and cheaper and evaluate toxicity of a larger number of concentrations.

Shortly after the NRC report on toxicity testing,(3) a separate NRC committee published 

recommendations on the use of toxicogenomic technologies and the need for more 

predictive toxicity testing for incorporation into risk assessments.(1) Improvements in cross 

species extrapolation, identification of vulnerable or sensitive populations, determination of 

life stage effects, investigation of mechanisms of action, and refinement of exposure 

assessments are all potential uses for toxicogenomic data.(1)

Computational toxicology was the subject of a National Academy of Sciences Standing 

Committee on Use of Emerging Science for Environmental Health Decisions meeting in 

September 2009. The field of computational toxicology has emerged in an effort to build 

predictive models from biomarker of effect data generated by omics technologies.(18) 

Computational toxicology identifies trends and patterns in biomarker and chemistry datasets.

(19) These models use chemical characterization to predict fate and transport as well as 

hazard identification. Computational toxicology also seeks to describe ways through which 

chemicals cause toxicity by developing computational tools that better utilize high 

throughput screening (HTS) and toxicogenomics data for hazard prediction. This includes 

models at varying levels of biological complexity, from relatively simple statistical 
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models(20–22) to advanced dose-response and virtual tissue models.(23, 24) The field of 

computational toxicology has rapidly expanded to include many more applications than 

HTS, which is still an evolving research area and in need of validation. Other applications 

are being utilized such as data mining the literature, in vitro- in vivo extrapolations, 

quantitative structure activity relationships, in silico models and use of National Health and 

Nutrition Examination Survey biomonitoring data for identification of populations at special 

risk of toxicity.(25–27)

In 2009, a third NRC publication was released that examined the EPA risk assessment 

process and how to practically improve it to assess human health risks.(28) Two main areas 

of risk analysis were evaluated, technical analysis and utility of risk. Technical analysis is 

how scientific information is generated and used so that more accurate risk characterizations 

can be obtained. Utility of risk examines the relevance of the risk assessments for making 

risk management decisions. A key recommendation was to improve the upfront design of 

risk assessments to make them more useful to answer risk management needs. In particular, 

the report emphasized the importance of problem formulation in determining the scope of 

the assessment, issues needing consideration, and options so that the risk assessment can 

support risk management decision-making. The report also noted the importance of 

characterizing and communicating uncertainty and variability and of placing greater 

emphasis on the evaluation of risk from cumulative exposure scenarios.

The EPA has initiated a program [http://www.epa.gov/risk/nexgen/] to evaluate the use of 

HTS, computational toxicology, and systems modeling for risk assessment and risk 

management for environmental exposures and the general population, though not necessarily 

occupational exposures.(29) The vision is for a tiered system that provides risk estimates on 

the basis of available data as well as a formal means for recommending chemicals for higher 

tier investigation.

ROLE OF BIOMARKERS IN OCCUPATIONAL RISK ASSESSMENT

A major aim of biomarker research is to develop and validate biomarkers that reflect 

specific exposures or are quantitatively linked to adverse outcomes in humans to enable their 

use in risk prediction. Biomarkers have a number of advantages over “apical endpoints” 

typically observed in in vivo toxicology studies.

Recent advances in biomedical technology have provided powerful tools to identify new 

biomarkers. -Omics technologies are increasingly being used and have brought capabilities 

to investigate adverse responses, underlying toxicity mechanisms, and key toxicity pathways 

that have the potential to be used in risk assessment.(30–32)

Environmental exposures can directly or indirectly cause alterations in gene expression at 

either the transcriptional (gene expression) or the translational level (proteomics). 

Development of gene expression profiles using oligonucleotide microarrays provides a view 

of perturbations at the transcript level and helps identify specific genes, pathways or 

networks that are specific to the toxic end point of interest.(33) Identifying appropriate 

biomarkers can be difficult because interpretation of global gene expression changes is 

challenging as such changes may reflect nonspecific responses or overlapping/interacting 
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molecular processes. The use of toxicogenomics data along with other types of supportive 

toxicological data has been considered for hazard characterization. Recent studies have 

shown that benchmark dose estimates, based on gene expression omics data, for non-cancer 

and cancer apical endpoints can be practically applied.(22, 34)

Determination of internal dose is important in risk assessment and provides highly relevant 

information that is more closely associated with disease response than external exposure 

estimates.(35) The capability of -omics technologies to generate information that can be 

used for internal dose estimation and response markers will be important in their use in risk 

assessment. Epigenetics effects may also have an important role in the development of 

disease. For example, gene silencing, which is the interruption or suppression of the 

expression of a gene at transcriptional or translational levels, can occur with 

hypermethylation of DNA.(36) Biomarkers of hypermethylation of DNA may be useful as 

early cancer detectors and therefore may have utility in risk assessments.

Although biomarkers have been identified using -omics technologies, there is no well-

established standardized application of these technologies in using biomarkers in risk 

assessment. Involvement of multiple molecular pathways in disease as in systems biology 

creates complex data analysis/interpretation challenges in validating associations between 

outcomes and sets of biomarkers.

The concept of the exposome, which encompasses all exposures over a lifetime, has the 

potential to improve risk assessment.(37) The exposome will rely on -omics or other high 

throughput techniques for the identification of biomarkers of exposure and effect. Multiplex 

profiling (metabolomics, proteomics, and transcriptomics) is now being used along with 

complementary assays for the most comprehensive and informative views of biological 

systems.(38) The exposome has the potential to offer more comprehensive exposure data 

that can be used to develop more accurate exposure profiles to improve risk assessments.

Most common chronic diseases involve the interaction of multiple exposures and biological 

pathways that ultimately lead to disease. System biology approaches have been used to 

study a variety of diseases such as epilepsy and metabolic syndrome and exposures such as 

particulate matter found in air pollution.(39–41) However, systems biology and how 

different biological processes may interact with one another to result in disease needs to be 

better understood to be useful in risk assessment.

The NRC(3) identified several strategies to use biomarkers of effect to extrapolate dose and 

evaluate dose response. Physiological-based pharmacokinetic (PBPK) modeling can 

describe the relationship between external exposure and the internal dose (e.g., blood or 

tissue concentration of a toxicant) that simulate the toxicity pathways of a chemical. PBPK 

models can also be used to estimate an external dose (i.e., the relevant real world exposure) 

that would correspond to the doses used in in vitro and in vivo test systems, as well as in 

dose-response models to predict the environmental exposure needed to elicit a toxic 

response.(3) Extrapolating in vitro dose-response data to predict responses in vivo has been a 

challenge because the doses applied in vitro have typically been much higher than cells in 

vivo (e.g., in the lungs) would experience even at occupational exposures.(42) An example 
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of one approach is a range of in vitro doses (~0.2–68 μg/ml) that was proposed based on 

estimates of the equivalent doses to human lung cells after either 24-hr or a 45-year working 

lifetime exposure to 1 mg/m3 of poorly soluble particles.(42) Uncertainty about how well in 

vitro studies predict responses in in vivo systems includes the effect of dose rate and the role 

of other cells and processes in determining the in vivo response.(43) An example of in vitro 

assays that show predictive trends of in vivo dose-response relationships is for biomarkers of 

inflammation in lung epithelial cell cultures and acute pulmonary inflammation in rats.(44, 

45)

Establishing a dose of concern is a primary goal of risk assessment. Several approaches that 

use an internal dose have also been described, including internal dose measures such as 

biological exposure indices(46) and biomonitoring equivalents.(47) Additionally, no 

observed effect levels and benchmark dose estimates can be applied for both internal and 

external dose measures.(48–50) These dose estimates may be used as points of departure to 

estimate exposures associated with lower (or presumed no) disease risk.

Genotype-exposure interactions are particularly important for occupational and 

environmental diseases. Environmental and occupational triggers may interact with genetic 

factors to initiate the disease process or influence the clinical outcomes including time to 

onset, severity of the response, or dose. There has been little effort in incorporating genetic 

information into the risk assessment process, although the advantage of such data in 

improving accuracy has been discussed.(51–53)

Currently, the default approach for addressing inter-individual variation in susceptibility for 

threshold effects is to apply a 10X uncertainty factor.(54, 55) Note that this factor is not 

intended to cover the entire range of human variability. Instead, this factor addresses the 

difference between a “safe dose” estimate in the general population and the “safe dose” 

estimate in the population of interest.(56) While the default size of the inter-individual factor 

is 10X, smaller or larger factors may be applied if supported by the available data, resulting 

in refined estimates of human variability. Criteria for the use of data to support other factors 

have been developed by the International Programme on Chemical Safety (IPCS).(57) 

Biomarkers can play a critical role in describing the distribution of responses to a specified 

dose. This concept is illustrated in Figure 3, in which the distribution (e.g., the biomarker for 

a physiologically important response) is shifted in the susceptible populations or life stages, 

resulting in a bi- or multi-modal overall distribution. The shape of the distribution for a 

given biomarker would depend on how it is distributed in the population (e.g., whether 

associated with specific gene alleles or results from multiple causes).

METHODS AND APPROACHES

Risk Assessment Methods and Issues

The goal of human health risk assessment is to predict the likelihood of adverse health 

effects before they manifest in a population. Different types of studies can provide 

information that has utility in risk assessments. Epidemiologic studies are important for the 

assessment of toxic effects directly in humans because no interspecies extrapolation is 

needed. Such studies are also important in estimating population-based, exposure-
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attributable risks. The most important challenges related to epidemiological studies are the 

difficulties in precise estimation of exposure, existence of confounding variables such as 

other exposures and considerable inter-individual variation including genetic make-up, 

physiological, nutritional, and lifestyle differences. Such studies are also costly and time 

consuming and have limitations in characterizing dose-response relationships, causal 

mechanisms, and extrapolating to low doses in risk assessment.(58, 59)

Extrapolations from animal studies to humans are confounded by a number of issues, 

including species-specific differences in uptake and response, homogeneity of test animals 

as compared to heterogeneity of human populations and short-term testing as compared to 

complex lifetime exposure, as well as uncertainties due to gaps in the available data. 

Extrapolation is further complicated by levels and routes of exposure, as these factors can 

differ greatly between animal models and real-life exposure scenarios. With regard to 

interspecies extrapolation, several factors must be considered, such as dose normalization 

for the differences in body size, metabolic rate, variability in toxicokinetics of the chemical 

and sensitivity of the target for toxicity. Occupationally-exposed populations have 

considerable physiological and genetic variability in such factors as metabolic capacity and 

in toxicity response.

Efforts have been undertaken to harmonize dose-response relationships for cancer and non-

cancer endpoints(60) focusing on MOA as the basis for selecting dose-response models and 

determining extrapolation approaches.(61, 62) In general, the default science policy choice 

based on MOA assumes that a threshold would not exist for substances that interact directly 

with DNA. This is based on the idea that damage to one DNA molecule could be fixed as a 

mutation and clonally expand to cancer or result in other effects, such as developmental 

toxicity. MOAs that do not involve direct DNA reactivity (e.g., cytotoxicity leading to either 

necrosis or to regenerative cell proliferation and cancer) are generally considered to have 

biological response thresholds, due to the existence of repair and redundant cellular 

processes.(63) However, when data are available that provide strong evidence for alternative 

modes of action, these data may replace default assumptions in risk assessment and OEL 

derivation. For example, NIOSH(64) used evidence concerning a secondary genotoxic MOA 

(via persistent inflammation) to inform selection of the nonlinear (but also non-threshold) 

dose-response models used to estimate the working lifetime risk of lung cancer from 

inhalation exposure to the poorly-soluble particulate titanium dioxide (TiO2).

There has been considerable discussion in the risk assessment community recently 

concerning the observation of non-threshold behavior for chemicals that do not interact with 

DNA.(28, 65, 66) A threshold response for a given agent may be difficult to detect in a 

population (e.g., a statistical dose-response model may not be able to exclude zero as a 

possible threshold dose), even if the MOA evidence indicates a threshold is plausible. 

Reasons for observing non-threshold behavior in a population for non-carcinogens include 

variability in individual threshold responses or exposures that contribute to an existing 

disease process.(67, 68) Rhomberg et al.(66) suggested some alternative explanations, such 

as measurement error at low exposures in epidemiology studies, for not detecting a threshold 

in human studies when a threshold is observed in animal studies. Additionally, the 
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observation of a threshold may be influenced by factors including variability and sample 

size in both animal studies and epidemiology studies.

Risk estimates based on extrapolating high-dose animal studies to humans may be 

particularly sensitive to assumptions about the MOA and shape of dose-response 

relationships including threshold/non-threshold assumptions. Thus, there may be 

considerable uncertainty in extrapolation from animal studies when the doses are 

considerably higher than those relevant to OEL development (e.g., if the MOA that occurs at 

a high dose is not relevant to that occurring at a much lower dose). Additional uncertainty 

may occur from temporal extrapolations, which could result in over- or under-estimation of 

the risk of long-term exposure.(69, 70) Even when the MOA is known, statistical arguments 

cannot resolve the uncertainty in low-dose extrapolation, and so science policy choices (e.g., 

default approach of linear low dose extrapolation for carcinogens in the absence of strong 

evidence indicating otherwise) are needed in risk assessment.

One of the advantages of using biomarkers of effect is that they can help to reduce the need 

for extrapolation, allowing instead evaluation of effects in the dose range of interest and in 

the species of interest (e.g., when human cells are tested in vitro). Under ideal situations, the 

MOA is used to identify appropriate biomarkers, which are then evaluated sufficiently close 

to the dose range of interest, so that mathematical curve fitting can be used to more directly 

estimate risk, rather than relying on the cruder approaches of linear extrapolation (assuming 

no threshold) or uncertainty factors (assuming a threshold response).

The use of precursor effect data or biomarkers of early effect is gaining increased scrutiny 

for use in risk assessments.(22, 71) A challenge is that many of these biomarkers lack 

validation.(72) The basis for extrapolation between the biomarker and the toxicological 

outcome needs to be established so that a dose associated with a low risk of an adverse 

health effect can be estimated.(71)

Direct Dose-Response Using Early Effects Data

The analysis of -omic dose-response studies has traditionally utilized analysis of variance 

(ANOVA) approaches together with pair-wise comparisons between dose groups and the 

corresponding control.(73, 74) The ANOVA identifies genes that are significantly altered as 

a function of dose while the pair-wise comparisons identify genes that are significantly 

altered between specific dose pairs. The ANOVA approach for analyzing -omic dose-

response studies is analogous to the methods used to define lowest observed adverse effect 

levels (LOAEL) or no observed adverse effect levels (NOAEL) for other toxicological 

endpoints. For applying -omic dose-response data to chemical risk assessment, the 

traditional ANOVA approach faces several challenges in that dose spacing and the 

experimental sample size can have a dramatic impact on the final NOAEL and LOAEL, and 

the approach does not account for variability in the estimate of the dose-response or the 

slope of the dose-response curve.

To utilize -omic dose-response data within the existing risk assessment paradigm, 

benchmark dose (BMD) methods have been used to fit a statistical model to the dose-

response data and to identify a dose that causes a defined change in the endpoint of interest.
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(22, 34, 75) The application of the BMD method provides several advantages including 

better use of dose-response information, more appropriate reflection of experimental sample 

sizes, and the lack of constraint to experimental doses. (76) In this analysis, the dose and 

individual gene response data are fit with the standard set of statistical models used in BMD 

analysis. A single model is selected for each gene based on fit, modeling complexity, and 

the BMD and associated lower confidence limit (BMDL).

To allow investigators to interpret the -omic data and provide context for the observed BMD 

values, public and commercial databases are used to group genes into functional processes 

and signalling pathways.(77, 78) The choice of database depends on the context required for 

interpreting the -omic dose response study. For certain studies, a pathway-based analysis 

may provide a better understanding of the underlying perturbations in the signaling networks 

while in other studies, an analysis focused on cellular-processes may provide better linkage 

with the phenotypic effects of the chemical. The BMD and BMDL values for the individual 

genes are summarized to represent the general behavior of the process or signaling pathway 

as a function of dose. In most cases, the mean or median BMD and BMDL are sufficient to 

capture the general dose-related perturbation of the category or pathway. In certain studies, 

the transcriptional BMD values for specific cellular biological processes and pathways 

showed a high degree of correlation with traditional non-cancer and cancer-related apical 

BMD values.(22, 79) Many of the correlated processes and pathways had been implicated in 

non-cancer and cancer disease pathogenesis. Subsequent studies have demonstrated a high 

degree of correlation between transcriptional BMD values for the most sensitive pathway 

response and traditional non-cancer and cancer-related apical BMD values.(13)

Early effects data can provide evidence about the MOA and the shape of the dose-response 

relationship for disease development. Epigenetic effects may alter down-stream responses 

and outcomes. However, to most effectively use early response and systems biology data in 

risk assessment and OEL derivation, predictive models are needed to link the early response 

with the probability of developing the frank effect (conditional on the early effect).

An example MOA involving early responses and frank effect is persistent lung inflammation 

associated with development of cancer.(80) This effect has also been observed in animals 

related to inhaled, poorly-soluble particles(81) including TiO2. The MOA for rat lung cancer 

from inhaled poorly soluble particles is generally considered to involve persistent pulmonary 

inflammation, which causes oxidative DNA damage.(81) Driscoll et al.(82) observed an 

increased mutation frequency in the hypoxanthine-guanine phosphoribosyl transferase gene 

(hprt mutations are detrimental lesions caused by oxidative damage to DNA) in alveolar 

type II cells from rats treated with a high mass dose (100 mg/kg) of fine-sized TiO2 or other 

types of poorly-soluble particles. In vitro, hprt mutation frequency was also increased in an 

alveolar epithelial cell line (RLE-6TN) following co-incubation with inflammatory cells 

(alveolar macrophages and neutrophils) derived from bronchoalveolar lavage fluid from 

particle-treated rats.(82) Addition of catalase (an enzyme which protects cells against 

oxidative damage) to these co-incubations inhibited the increase in hprt mutations. These 

studies support a role of inflammatory cell-derived oxidants in particle-associated 

mutagenesis.
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In risk assessment and development of recommended exposure limits for fine and ultrafine 

TiO2, NIOSH(64) used statistical models of animal dose-response data for lung cancer and 

pulmonary inflammation to estimate the working lifetime risks. On the basis of a secondary 

genotoxic mechanism, prevention of persistent lung inflammation would be expected to 

prevent lung cancer by that mechanism. However, evaluation of the rat subchronic 

inflammation data did not show evidence of a threshold (although the dose-response 

relationship was nonlinear). Rat- and human-based excess risk estimates for lung cancer 

from working lifetime exposures to inhaled poorly-soluble particles were compared. The 

particles evaluated include those for which long-term dose-response data are available in 

both species, i.e., coal dust, carbon black, titanium dioxide, silica, and diesel exhaust 

particulate. The excess risk estimates derived from the rat data were generally lower than 

those derived from the human studies, and none of the rat- and human-based risk estimates 

were significantly different (all p-values>0.05).(83) Given the limited data available to 

quantitatively evaluate the relationship between inflammation and lung cancer in rats or 

humans, NIOSH derived the Recommended Exposure Limits on the basis of rat dose-

response data for lung tumors. NIOSH estimated the human-equivalent, 8-hr time-weighted 

average concentrations associated with <1/1000 excess risk of lung cancer over a working 

lifetime, derived from the nonlinear dose-response models fit to the rat data.(64)

Biologically-Based Dose Response (BBDR) Models

Risk estimates that rely on default assumptions may be uncertain to the extent that the true 

relationships differ from those assumptions. This uncertainty arises from the limited data 

that are available to inform the selection of the dose-response models and the assumptions 

used in interspecies and low-dose extrapolations. Risk estimates on the basis of default 

assumptions may overestimate the risk for a population because the default approaches are 

intended to be conservative in the absence of chemical-specific data.(84) They may also 

underestimate risk in other cases (e.g., if greater individual variability exists than accounted 

for in the default assumptions).(85, 86)

By utilizing measurements of biological pathway perturbations, uncertainties in the target 

tissue dose across species and the influence of exposure routes may be decreased, resulting 

in more reliable risk assessments.(84) An advantage of a BBDR model is that, by describing 

key steps in the development of toxic effects, alternative mechanisms of action can be 

evaluated and compared to the data, to test hypotheses and evaluate the importance of 

specific assumptions. BBDR models also have the advantage of directly predicting the 

response at doses of interest, avoiding the threshold/non-threshold dichotomy, but they may 

require assumptions about the connections between dose and key events. These models can 

also incorporate inter-individual susceptibility and confounders such as existing diseases and 

background exposures.(65) Although BBDR models have a number of advantages, a key 

issue in their use is the uncertainties associated with the parameters used in the model, as 

well as the substantial sensitivity of the model results to the assumptions regarding the 

underlying mathematical form for intermediate steps in the mechanism of action.(87) 

However, identification of biomarkers corresponding to these intermediate steps would 

provide an opportunity to directly address these assumptions and reduce the uncertainty of 

key parameters. Verification of BBDR model predictions, as well as incorporation of 

DeBord et al. Page 10

J Occup Environ Hyg. Author manuscript; available in PMC 2015 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



population-based distributions of parameter values, may be needed for wider acceptance of 

these models in risk assessment and development of OELs. The International Programme on 

Chemical Safety(88) guidance on use of physiologically-based pharmacokinetic (PBPK) 

models in risk assessment provides a template to facilitate understanding of models by risk 

assessors; a key consideration is comparing the uncertainties of the PBPK/BBDR model 

with those of the default approach.

Biologically-informed empirical dose-response modeling provides a bridge between strictly 

empirical models and full BBDRs. Such approaches are analogous perhaps to 

compartmental pharmacokinetic models, but can incorporate pharmacodynamic data using 

biomarkers. Like the compartmental pharmacokinetic models, the biologically-informed 

empirical dose-response models incorporate some chemical-specific data, but include 

empirical curve-fitting. The goal of such analytical methods is to improve the qualitative and 

quantitative description of the biological processes determining the shape of the dose-

response curve, without investing the resources needed to develop and verify a BBDR 

model. An advantage of these approaches is the use of quantitative data on early events 

(biomarkers) to extend the overall dose-response curve to lower doses using biology, rather 

than being limited to the default choices of linear extrapolation or uncertainty factors. Using 

biomarkers to extend the dose-response curve towards the dose region of interest also offers 

the potential for better description of the dose-response relationship of chemicals with a 

MOA that includes contributions from both DNA-reactive and non-DNA reactive 

components.

Allen et al.(71) developed such a model as a proof of concept for predicting risk of lung 

cancer given persistent lung inflammation from chronic inhalation of TiO2 in rats. A series 

of cause and effect functions, fit using a likelihood estimation approach, were utilized to 

describe the relationships between successive key events leading to the ultimate tumor 

response. This approach was used to evaluate a hypothesized pathway for progression from 

a biomarker of exposure (lung burden), through several intermediate potential biomarkers of 

effect, to the clinical effect of interest (lung tumor production).

Another approach to biologically-informed empirical dose-response modeling was 

demonstrated by Hack et al.,(89) who used a Bayesian network model to integrate exposure 

biomarkers to conduct an exposure-dose-response assessment for acute myeloid leukemia 

resulting from exposure to benzene. The network approach was used to evaluate and 

compare individual biomarkers and quantitatively link the biomarkers along the exposure-

disease continuum. This work provides a quantitative approach for linking changes in 

biomarkers of effect both to exposure information and to changes in disease response. Such 

linkage can provide a scientifically valid point of departure that incorporates precursor dose-

response information without being dependent on the difficult issue of a definition of 

adversity for precursors.

More classical mathematical approaches also have the potential for linking biomarkers to 

adverse effects. For example, the Hill model describes the biology of a chemical binding to a 

receptor, a key event in many receptor-mediated MOAs. Budinsky et al.(90) used the Hill 

model to compare the dose-response for aryl hydrocarbon receptor-mediated CYP1A1 and 
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CYP1A2 messenger RNA induction and enzyme activity in rat and human hepatocytes 

exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,4,7,8-pentachlorodibenzofuran, or 

2,3,7,8-tetrachlorodibenzofuran. In an extended analysis of genome-wide transcriptomic 

data from the same experiment, BMD analysis of the gene expression changes showed an 

average 18-fold cross-species difference in potency among differentially expressed 

orthologs and similar differences were observed for signaling pathways.(91) The data were 

used to support the conclusion that humans are less sensitive than rats to these aryl 

hydrocarbon receptor-dependent end points and to support the use of a modified uncertainty 

factor for extrapolating between rats and humans.

More general approaches to empirical dose-response modeling are incorporated in standard 

modeling methods where the mathematical form used for empirical curve-fitting is based on 

the presumed shape of the biological response. Thus, for example, probit modeling is 

typically used for modeling lethality data. Similarly, a multistage model has been used for 

tumor modeling, based on the multi-stage model for cancer. In an example of modifying the 

standard choice based on biology, Dourson et al.(92) used the probit model to describe the 

dose-response for thyroid tumors in rats orally exposed to acrylamide. This choice was 

based on both improved empirical model fit compared to the multistage model, and the 

observation that the shape of the probit model better reflected (compared with the default 

linear extrapolation approach) the mixed MOA of DNA reactivity at low doses and growth 

stimulation at the higher doses tested in the animal bioassay.

CONCLUSIONS

Advantages and Limitations

Several key advantages to the use of biomarkers in risk assessments exist. Biomarkers are 

used to identify the MOA and can support the MOA in risk assessments rather than relying 

on general default approaches. Additionally, biomarkers can be used to characterize inter-

individual variability by helping to ensure that sensitive populations are identified and 

adequately addressed in the assessments and to reduce uncertainty in the extrapolation of 

animal data to humans.(53, 93) Another advantage of biomarkers is hypotheses are tested at 

doses relevant to human exposures. One ultimate goal of the use of biomarkers is to extend 

the dose-response curve to the range (or near the range) of the exposures of interest. This 

would allow one to use the biomarker data more directly to evaluate dose-response, without 

having to go to default approaches of linear or nonlinear extrapolation. Such data could be 

used to establish more appropriate OELs to protect individuals who are at high risk. Systems 

biology and MOA approaches will also lead to new hypotheses and ways of thinking about 

chemical risk assessments and hence move the entire field of risk assessment forward.

While early biomarkers of effect have great promise, many limitations and challenges need 

to be overcome before early effect biomarkers can be reliably used. The whole field of 

computational toxicology and systems biology is still evolving and results have not been 

validated in human populations. Appropriate interpretation and validation of biomarker 

results is lacking.
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Special Issues in Applying These Approaches for OEL Setting

Developing OELs on the basis of early effects dose-response data means that more sensitive, 

relevant endpoints could be targeted for prevention. If these biomarkers can be validated to 

ensure they represent an adverse effect, it may be possible to reverse a deleterious exposure 

before the disease has progressed. These precursor events (i.e., detected using a biomarker) 

might be preclinical but could be associated with an increased susceptibility to develop the 

disease effect. Setting OELs to prevent early adverse effects may help to prevent material 

impairment of health and functional capacity as a result of workplace exposure. However, a 

challenge is to determine the linkage between early effects, which may not yet constitute 

material impairment of health and functional capacity, and the later adverse outcomes.

Since the risk of preclinical responses have not been well-defined with respect to what those 

biomarkers to health, this presents a challenge in how to utilize early effects data in a 

standardized, harmonized risk assessment strategy across agents and cancer and non-cancer 

endpoints, as recommended by the NRC.(28) The use of BBDR models to quantitatively 

link early preclinical changes to apical endpoints of regulatory concern may mitigate this 

problem in the future.

Standardization is an important issue in the use of biomarkers, although the issue is not 

unique to the biomarker-based risk assessments. In an approach based on the NOAEL/

LOAEL with uncertainty factors, the NOAEL may be based on a range of different 

responses or severity of response at the corresponding LOAEL. This severity of the endpoint 

may be addressed in the magnitude of the uncertainty factor applied to the LOAEL, but this 

is a relatively crude approach. One of the advantages of the BMDL is that it is based on a 

response level, but differences in severity of the endpoint can still lead to inconsistencies.

Early biological effects using a systems biology approach and computational toxicology 

efforts offer great promise for the future of risk assessment. Information on these effects can 

be generated using HTS providing needed information quicker and cheaper than 

conventional animal testing. Proof of concept studies in computational toxicology provide 

early evidence of their promise in utilizing early biomarkers in establishment of dose.(22, 

34) However, challenges such as standardization and validation still need to be overcome 

before these methods are used in routine risk assessments.
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Figure 1. 
Continuum from exposure to disease. Adapted from NRC(9); Schulte and Perera(10)). 

Reprinted with permission from Environmental Health Perspectives
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Figure 2. 
Biologic responses as a result of an exposure. The intersection results in perturbation of 

biologic pathways. When perturbations are sufficiently large or when the host is unable to 

adapt because of underlying nutritional, genetic, disease, or life-stage status, biologic 

function is compromised, and this leads to toxicity and disease.(94) Reprinted with 

permission from Trends in Biotechnology.
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Figure 3. 
Frequency distribution of a biomarker (physiological parameter) in two hypothetical 

populations to illustrate the effect of exposure and susceptibility factors. Adapted from 

Woodruff et al. (95). Reprinted with permission from Environmental Health Perspectives.
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Table I

Glossary of key terms

Key Term Definition

Benchmark dose A dose of a substance that when absorbed produces a predetermined change in the response rate of an 
adverse effect relative to the background response rate of this effect

Benchmark response (BMR) A predetermined change in the response rate of an adverse effect relative to the background response rate 
of this effect. The BMR is the basis for deriving benchmark doses.(50)

Biological-based dose response 
models (BBDR)

A predictive model that describes biological processes at the cellular and molecular level linking the target 
organ dose to the adverse effect.(96)

Biomarkers internal measures or markers of exposures or effects for a chemical or agent in the body

Biomarkers of exposure The chemical or its metabolite or the product of an interaction between a chemical and some target 
molecule or cell that is measured in a compartment in an organism(97)

Biomarker of effect A measurable biochemical, physiologic, behavioral, or other alteration in an organism that, depending on 
the magnitude, can be recognized as associated with an established or possible health impairment or 
disease(97)

Biomarker of susceptibility An indicator of an inherent or acquired ability of an organism to respond to the challenge of exposure to a 
specific chemical substance.(97)

Computational Toxicology Computational toxicology identifies trends and patterns in biomarker and chemistry datasets.(19)

Genomics Refers to the entire genome of an organism whereas genetics is the study of a specific gene

Exposome Concept by Wild(37) defined as the totality of exposure over a life time beginning in utero until death and 
the impact those exposures have on health

High throughput screening (HTS) Experiments that can be automated and rapidly performed to measure the effect of substances on a 
biologic process of interest. These assays can evaluate hundreds to many thousands of chemicals over a 
wide concentration range to identify chemical actions on gene, pathway, and cell function

Lowest observed adverse effect 
level (LOAEL)

The lowest exposure level at which there are biologically significant increases in frequency or severity of 
adverse effects between the exposed population and its appropriate control group(96)

Metabolomics Studies the metabolic products of the human body and provides a comprehensive view of cellular 
metabolic changes in small molecules and byproducts.(98) The metabolomics-driven approaches may 
provide insight into complex biochemical processes and the MOA and toxicity of chemicals.(99, 100)

No observed adverse effect level 
(NOAEL)

The highest exposure level at which there are no biologically significant increases in the frequency or 
severity of adverse effects between the exposed population and its appropriate control; some effects may 
be produced at this dose level, but they are not considered adverse or precursors of adverse effects(96)

-omics technology The collective characterization of components and measurement of molecules from a biological field of 
study, which involves large scale data acquisition system that can be used to measure biological states or 
responses. Examples include genomics, proteomics, transcriptomics, and toxicogenomics

Proteomics Involves the identification, characterization, and quantitation of expressed proteins in biological samples. 
Provides complementary functional information to genomics

Systems biology An approach used to integrate biological data to understand how biological systems function

Toxicogenomics Brings together toxicology, genetics, and molecular biology such as transcriptomics, proteomics, and 
environmental health to understand the response of an organism to an external insult. The promise of this 
technology is that biomarkers of exposure and effect can be elucidated.(7) Insight into the mechanism of 
action and low-dose effects are other benefits

Transcriptomics The study of RNA transcripts that result in gene expression

Uncertainty factors A numerical value (often a factor of 3 or 10) used to adjust a point of departure (e.g., generally a no 
observed/lowest observed adverse effect level or benchmark dose) in order to derive a reference 
concentration or reference dose. Uncertainty factors are applied as needed to account for extrapolation of 
results in experimental animals to humans, inter-individual variability including sensitive subgroups, 
extrapolation from a NOAEL or LOAEL, extrapolation of results from subchronic exposures to chronic 
exposures, and database inadequacies.(101)
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Table II

Definitions of Acronyms

ANOVA Analysis of variance

BMD Benchmark dose

BMDL Benchmark dose and associated lower confidence limit

BBDR Biologically-Based Dose Response

EPA Environmental Protection Agency

FDA Food and Drug Administration

FEL Frank effect level

HTS High throughput screening

LOAEL Lowest observed adverse effect levels

MOA Mode of action

NAS National Academy of Sciences

NIH National Institutes of Health

NIOSH National Institute for Occupational Safety and Health

NOAEL No observed adverse effect level

NOEL No observed effect level

NRC National Research Council

OEL Occupational exposure limit

PBPK Physiological-based pharmacokinetic

REACH Registration, Evaluation, Authorisation, and Restriction of Chemicals
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Table III

Different Types of Biomarkers

Type of Biomarker Characteristics Example

Exposure Measurement that reflects biologically effective and internal dose Urine or blood concentration of agent

Effect Measurable biochemical, physiological, or other alteration that can be 
recognized as a potential health impairment(102)

DNA mutation or cytogenetic change

Susceptibility Inherent or acquired sensitivities or resistance in response to specific 
exposures

Genetic polymorphisms in metabolic 
activation/deactivation enzymes
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Table IV

Efforts Affecting the Use of 21st Century Technologies and Risk Assessment

Group Name Result/Goals

European Commission Registration, Evaluation, Authorisation, 
and Restriction of Chemicals (REACH)
(14)

Determination of risk of chemicals to improve the protection 
of human health and the environment

National Research Council Toxicity Testing in the 21st Century(3) Recommendations for greater use of in vitro testing and 
computational approaches

National Research Council Applications of Toxicogenomic 
Technologies to Predictive Toxicology and 
Risk Assessment(1)

Recommendations for use of toxicogenomic technologies in 
risk assessment

National Academy of Sciences Meeting on Use of Emerging Science for 
Environmental Health Decisions(19)

Discussion of promise of computational toxicology for policy 
decisions

National Research Council Science and Decisions: Advancing Risk 
Assessment(28)

Recommendations for improvements in the science and 
practice of risk assessment

EPA NexGen(101) Evaluation of use of HTS, computational toxicology and 
systems modeling for risk assessment
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Table V

Uses of Biomarkers in Hazard Characterization and Dose-Response Analysis

Aids in the identification of mode of action in support of risk assessment

Extends the dose-response curve to lower levels of exposure

Addresses uncertainty and variability including interspecies differences and identifying susceptible population
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Table VI

Examples of -Omics Technologies

Technology Parameters

Proteomics Involves the identification, characterization and quantitation of expressed proteins in biological samples. Provides 
complementary functional information to genomics.

Metabolomics Studies the metabolic products of the human body and provides a comprehensive view of cellular metabolic changes in 
small molecules and by-products.(98) The metabolomics-driven approaches may provide insight into complex biochemical 
processes and the MOA and toxicity of chemicals.(99, 100)

Toxicogenomics Brings together toxicology, genetics, and molecular biology such as transcriptomics, proteomics, and environmental health 
to understand the response of an organism to an external insult. The promise of this technology is that biomarkers of 
exposure and effect can be elucidated.(7) Insight into the mechanism of action and low-dose effects are other benefits.
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Table VII

Effect Levels, by Severity, that are Considered in the Derivation of Exposure Limits

Effect or No 
Effect Level

General Effect

NOEL No observed biological effects in the exposed population

NOAEL Effects may be seen at this level but not considered to be adverse

a. Enzyme induction or other biochemical change, consistent with possible mechanism of action, with no 
pathological changes and no change in organ weights

b. Enzyme induction and subcellular proliferation or other changes in organelles, consistent with possible 
mechanism of action, but not other apparent effects.

c. Hyperplasia, hypertrophy, or atrophy, but no changes in organ weights

LOAEL Lowest exposure concentration where adverse effects are seen between the exposed and the control population.

a. Reversible cellular changes including cloudy swelling, hydropic change or fatty changes

b. Degenerative or necrotic tissues with no apparent decrement in organ function

FEL Exposure level in which unmistakable adverse effects are seen that are likely to be irreversible

a. Pathological changes with definite organ dysfunctions

b. Pronounced pathological changes with severe organ dysfunction with long-term sequelae

Notes: NOEL – No Observed Effect Level; NOAEL – No Observed Adverse Effect Level; LOAEL – Lowest Observed Adverse Effect Level; FEL 
– Frank Effect Level. Adapted from EPA(103)
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